インバータ回路の評価方法 GaN/SiC/MOSFET 解析_トータルソリューション v1.3 2018.1207

【図1:インバータ・モータシステム】

【図1】のインバータ・モータシステムは、三相交流入力を 直流電圧に変換した後でモータを駆動する為の交流電力に 変換しています。Inverter 部のパワーデバイス(パワーモジ ュール)のスイッチング高速化とキャリア周波数のキャリア周 波数の高周波化や制御の最適化によって、省エネルギー化 を図っています。電力供給先のモータは、損失の抑制のた めに、低損失磁性体材料などが使われています。損失の低 下によって、電気機器の小型化にも大きく貢献しており、単 位体積当たりのシステムのエネルギー密度はさらに高まっ ています。この様な状況において、設計者は、変化を見逃さ ないように、パワーアナライザやオシロスコープで変化を見 極めようとしています。

【図2:インバータモジュール内部】

【図2】には、インバータの分解写真を掲載しています。 インバータ機器の底面に配置された三相インバータ機器 は、左半分がインバータ部、右半分が制御系の回路が配置 されています。インバータのスイッチング波形は、モジュール とプローブを確実に固定してから、ゲート信号、高電圧スイッ チング波形を確認します。

それでは、オシロスコープ、差動プローブ、カーブトレーサ などの測定器を活用したインバータ回路の多角的な解析方 法をご紹介いたします。

実際に測定すると、GaN/SiC/MOSFET デバイスのスイッチング波形は回路シミュレーション通りに、波形観測結果が

得られないことがあります。この一つ の要因として「プロービング」の方法が あります。

省エネルギー対策のために、Si デ バイスから高速スイッチングデバイス が使われるようになっています。これ まで、ラフなプロービングでも簡単にク リアな波形が得られることがほとんど でした。しかし、高速スイッチングデバ イス SiC/GaN/MOSFET は、高 dv/dt 化が進み、実装されている基板の特 性やプロービング時のインピーダンス 特性によって、電圧波形の歪みが見 受けられるようになりました。プロービ ングすることで回路動作が変わってし まう事態になりつつあります。これは、 電圧波形に限ったことではなく、電流 の変化も高 di/dt 化が進んでいるた め、正確な電流波形を捕らえる事が

難しくなっています。そこで、本資料において高速スイッチン グ動作する回路に対応する測定の課題と施策について紹介 し、皆様の測定課題を解決できればと思い記述いたしまし た。

電圧や電流を正確に測定することで、電力損失が正確に 測定できること、電流や電圧歪みが大きい場合に電圧波形× 電流波形=電力損失から、歪みによって電力が変わり、電 圧プローブと電流プローブの性能によっても電力損失が変 わる事につながってしまいます。なかなか上手くいかないの が高速スイッチングデバイスの波形観測です。

まず、電力損失を正確に測定するために4つの電力計測 方法について、後半は各種測定器及びアプリケーションにつ いて紹介します。

- 1. 動的な電力損失を測定する方法
- 2. 静的な電力損失を測定する方法
- 3. 実効電力を測定する方法
- 4. 高位相角のデバイスの損失を測定する方法
- 5. インピーダンスアナライザによる部品の測定
- 6. インバータの制御
- 7. デジタルマルチメータを用いた電圧の監視
- 8. インバータ測定、パワーデバイス/モジュール試験
- 9. 三相 2 レベルインバータの測定
- 10. インバータの高分解能・高精度測定の課題
- 11. 電力損失を熱で捕らえる

これらに測定提案を加えて紹介します。

1. 動的な電力損失を測定する方法

動的な力損失の計測では、スイッチング ON 時、ターン ON 時、ターン OFF 時の電圧・電流波形を、確実捕らえる方 法を、各種プローブ、オシロスコープ、光絶縁計測(アイソレ ーション・システム)を活用した事例を紹介しながら説明しま す。

【課題】

- (1) 電圧プローブの種類とプロービング方法
- (2) 電流プローブの種類とプロービング方法
- (3)プローブ校正方法
- (4)位相調整方法

(1)電圧観測の方法とプロービング方法 パワエレ用の電圧観測用ツールは、一般に高電圧信号を 減衰させて測定しており、3つのタイプがあります。

- ① シングルエンドプローブ
- ② 高電圧差動プローブ(高電圧ペアプローブ含む)
- ③ 光絶縁方式(アイソレーションシステム)

①シングルエンドプローブ

○周波数特性/立ち上がり・立ち下がり遷移時間

電圧プロービングによって観測される波形は、プローブや 測定器の特性を含んだ結果であり、以下に示す3つのプロ ービングの原則を考慮します。

- ・高入カインピーダンス
- ・ディレーティング特性

・プロービングの形式があります。

入カインピーダンスは、抵抗値が「無限大」、容量が「0」、イ ンダクタンスが「0」が望ましいのですが、実際には 10MΩ7.5pF とプローブによって異なりますが、抵抗、容量 が存在します。インダクタンスもプロービングによって大きく 現れることもあります。

まず、GaN デバイスの波形を PMK 社の【図 3】PHV-661—RO(100:1 自動認識ピン付き)を利用して、200V の スイッチング電圧を測定します。

【図 3. PHV-66x-RO シリーズプローブ】

500MHz 帯域のオシロスコープに入力抵抗は 50MΩ、入 力容量は 7pF 未満、周波数帯域は 380MHz、プローブの立 ち上がり特性は 0.95ns のプローブを接続します。数 ns のタ ーン ON 時間を持つ GaN デバイスならば十分に【図 4】の 様に測定できます。

500MHz 帯域のオシロスコープで PHV661-RO プローブ を活用して観測された波形の立ち上がり時は 5.50ns (振幅 変化 90%-10%の遷移時間)でしたが、プローブとオシロスコ ープの特性が加わった測定結果となるため、実際のターン ON 遷移時間は、以下の【式 1】から推定することができま す。 ターン ON 測定結果=

の関係から 5.3715ns が本来のターン ON 遷移時間と推測 されます。振幅は 206V でオーバーシュート、波形歪みが抑 えられた波形が観測されています。波形は、GaN デバイス およびプリント基板の特性が現れています。 シングルプロ ーブでも十分に正確な波形を捕らえていますね。

【図 4. GaN デバイス・ターン ON 波形】 20ns/div

【測定のポイント1】

オシロスコープはフローティング測定(回路が、グランド基 準で動作していても)

【測定のポイント2】

グランドリードは、インダクタが支配的であると考えます。

○高入力インピーダンス

プローブを利用する上での3原則のひとつである高入カイ ンピーダンスについて以下に紹介します。

(a): グランドリード=0 の等価回路

図5:パッシブプローブの等価回路

信号源出カインピーダンス 50Ω、終端抵抗 50Ω の回路 に接続した、理想的な 10:1 のプローブの簡易等価回路を 【図 5】(a)に示します。等価回路は、抵抗とコンデンサのみで 構成されているため、終端 50Ω における信号出カにリンギ ングの様な歪みは抑えられますが、(b)の様に、グランドリー

ド部にインダクタンスが入ると大きな歪みが現れるので注意 しましょう。これらの差異を図 6 に示します。上段のグランド リード最短(0.1nH)の場合と、グランドリード(20nH)の場合 を比較すると大きい差が現れます。GaN/SiC/MOSFET デ バイスのスイッチング測定では大きな測定誤差要因となりま す。

(上段)グランドリード最短
 (下段)グランドリード 20nH 相当
 【図 6:高電圧プローブのディレーティング特性】
 20ns/div

【測定のポイント3】

グランドリードを最短にすると波形歪みが抑えられます。

次に、振幅を確実に得るために高入力インピーダンス(高入力抵抗)のプローブを使いますが、10:1、100:1,1000:1の高電圧プローブの殆どは高入力インピーダンスのプローブです。それらの中で、50MΩと10MΩの入力インピーダンスを持つパッシブプローブの特性【図7】を比較してみましょう。

【図 7. パッシブプローブの入力インピーダンス特性 低い周波数では高入力インピーダンスを維持しています が、周波数が高くなるに従って、インピーダンスが低下しま す。一種のローパスフィルタの様な特性になります。 グラフでは、数 10MHz 当たりから被測定物の負荷インピ ーダンスとプローブの入力インピーダンスの差が縮まること が予測されます。高い周波数領域では、電圧測定誤差が生 じやすくなります。

【測定ポイント 4】 入力インピーダンスの高いプローブを選びます。

●ディレーティング特性

プローブは、【図8】にディレーティング特性を示します。デ ィレーティング特性とは、プローブを安心して使っていただけ る入力電圧範囲を示す特性図です。理想的なサイン波は、 基本波周波数における電圧範囲を考えます。パルス波/方形 波/歪みのある波形は、基本波成分から高調波成分までディ レーティング特性以下でなければなりません。大型機器(大 電流・高電圧動作)のインバータなど、高電圧スイッチング波 形に大きな歪みが現れることが予測されます。ディレーティ ング特性に対して余裕を持った高電圧測定をしましょう。

注意: 1kV 入力できるプローブは、すべての波形に対して 1kV 入力できるとは限りません。

高電圧プロ-ブの外皮絶縁特性が優れたタイプもございま す。

【図 8. 1kV/600V プローブのディレーティング特性例

【測定のポイント5】

電圧プローブには、ディレーティング特性があります。規定 の入力範囲内で使います。

●シングルエンドプローブまとめ

【測定ポイント1~5】の集大成のプロービング方法を図9 に示します。極カグランドリード、信号ピンを短くして測定しま す。なお、測定リードは状態に合わせて作り込みます。

【図9. プロービング方法】

②高電圧差動プローブ(高電圧ペアプローブ含む)

差動入力回路で構成された、バランス入力型のプローブで、 2つのタイプがあります。

●差動ペアプローブ

【図 10. 差動ペアプローブ】

特性の一致したシングルエンドプローブ2本を組み合わせ た差動ペアプローブと呼ばれるタイプがあります【図 10】。パ ワーデバイスの単体試験、市販されているパワーデバイス の評価ボードの計測、超高電圧測定などで使われていま す。20kV クラス以上の電圧でも測定することができるような ペアプローブも用意されています。【図 11】に実際のプロー ビング例を示します。差動ペアプローブ先端近くの金属製筒 状のグランド部に銅線を巻き付けます(銅箔なども可).測定 器の入力側は、BNC コネクタで接続されてお互いのグランド 側が機器共通グランドで電気的につながります。これによっ て、プローブの信号入力ラインとちょうど反対方向に同じ電 流が流れて、同軸ケーブルの内側と外側の電流の磁界はキ ャンセルされます。誘導磁界は抑えられ、インダクタンスも抑 えられた状態で計測する事ができます。高電圧スイッチング にしている所でも、沿面距離が許す限りペアプローブのグラ ンド側の接続を短くします。同軸ケーブル部は若干ツイストさ せておくと良いでしょう。

【図 11. 差動ペアプローブでプロービング】

●高電圧差動プローブ

簡単に GaN/SiC/MOSFET デバイスの高速スイッチング 波形を観測可能な高電圧作動プローブが用意されていま す。一般に、100MHz 帯域の差動プローブは、コスト優位性 があることから、最も使われている高電圧差動プローブと言 えます(2018 年 10 月時点)。生産ラインの検証、パワー回 路のデバック、故障解析にも役立ちます。

実際の測定は、【図 12】の様に、実際のダブルパルス試験による高電圧スイッチング電圧波形と電流波形を示します。 ON/OFF の様子はプローブを確実に固定して安心して 測定できます。ON 遷移時間は 5.21ns 高速スイッチング ターン ON 5.21ns ドレイン電流は、100MHz ロゴスキーコ イル電流プローブで最大電流 21.7A(2回目のターン ON 時)を捕らえています。

[【]図 12. GaN スイッチング電圧・電流波形】

【図 13】SKID PCBA フレームと3D ポジショナーを利用 してプローブと基板を固定しています。デバイスの直近でプ ロービングしています。差動プローブを利用してもリードを長 く取らないようにします。最短プロービングを可能とする各種 ピンなどを使い、デバイス、基板などの状況に応じたプロー ビングを行います。

【図 13 プロ-ビング拡大図 と SKID フレーム固定のプローブ】

本実験では、差動プローブの先端には、基板に一定の力 が加わるようなピン先を取り付けてあり、安定したプロービン グができます。

【図 14】(a)に差動プローブ本体及び専用の電源(2ch)、 (b)にプローブの先端に取り付けるアクセサリの一部を示しま す。(a)では、2chタイプの電源を示していますが、他に 4ch タイプもあります。BumbleBee を 3,4 本利用する場合は、 4ch タイプの電源をお使い下さい。

890-880-106 Pair of Mini Spring Tip Probes 4 mm (black, red)

(b)プローブ先端治具の例 【図 14.高電圧差動プローブ BumbleBee】

高電圧差動プローブのを安心してお使いいただける電圧 範囲は、【図 15】BumbleBeeのディレーティング特性を参考 にして下さい。

Typical Voltage Derating BumbleBee

【図15. BumbleBee のディレーティング特性】

【測定のポイント6】

高電圧差動プローブ BumbleBee を使うと簡単に高速スイッ チング波形を観測できます。プロ-ビングを助ける SKID や、 プローブ先端に取り付ける治具を利用しましょう。 ④ 光絶縁方式(アイソレーション・システム) 究極のインバータ測定ツール「光絶縁計測(光アイソレーションシステム)」を紹介します。SiC 系や GaN 系で作られたパワー半導体のように非常に高速にスイッチングする半導体の評価時には、アイソレーション・システム DM-8000 を使用することでコモンモード・ノイズや波形ひずみを抑えた信号観測を確実に行うことができます。アイソレーション・システムは、バッテリー駆動する被信号測定部(プローブ、アイソレーションユニット)と信号観測部(制御部)を、光ファイバケーブルで電気的に完全に分離することで理想的な測定環境を構築します。図 16(a)はシステムの構成、(b)はアイソレーション・ユニット DM-900A シリーズと制御用のメインユニット、 PMK 社製高電圧プローブの接続例です。

本システムは、取り付ける高電圧プローブ、減衰器によっ て 100kV クラスの開閉器の試験や、非常に高いサージ電 圧などが発生する自動車や電車用インバータの試験などに 幅広く対応します。岩崎通信機は、PMK 社、NORTHSTAR 社などの高電圧プローブを扱っておりますので、どのような 測定にも柔軟にお応えできます。

⁽a)測定システムの構成

(b)アイソレーション・システムの外観 【図 16. 光絶縁方式(アイソレーション・システム)】

それでは、GaN のスイッチング波形をご覧頂きましょう。

測定回路を【図 17】に示します。測定には、PHV1000-S(対 地高耐圧対応シリコンチューブ被覆プローブ)を用いました。 周波数特性は、PHV1000 シリーズと同じです。時間軸 20ns/div,電圧軸 50V/div 振,200V,ターン ON(10-90%)遷 移時間 5.833ns,ターン OFF(90-10%)遷移時間 9.587ns と 高速スイッチングしています。

(a)ターン ON 20ns/div,50V/div

(b)ターン OFF 【図 18. GaN スイッチング波形】 20ns/div,50V/div

ゲート信号も確実に取得することができますが、 GaN/SiC/MOSFET デバイスの信号を観測する際は、シミュ レーションで回路の挙動を確認することをおすすめします。 実際に波形歪みが現れているケースで、プローブの影響と 思われていた波形が、実は回路本来の動きであった事が確 認されたケースが非常に多くあります。

まず、シミュレーションした例を【図 19】に示します。

【図 20.ゲート信号のシミュレーション結果

プロービングしていない状態でシミュレーションをしました が、電極間容量、配線のインダクタンスなどの影響により歪 みが現れています。実際の波形【図 21】を確認するとゲート 信号の L→H レベルの中間点に波形歪みが現れています。 また、H→L レベルに変化した後にわずかな繰り返し波形が 確認されています。デバイス回路の特性が出ているようです。 これらの波形は、高電圧重畳されたハイサイド・ゲート信号 の観測にも有効です。確実にコモンモード・ノイズを抑えて測 定できます。

【図 21.ゲート信号 20ns/div,1V/div

それでは、プロービング事例も確認してみましょう。 【図 22】に銅箔を使ったプロービング事例を紹介します。波 形歪みの大きな問題は、グランドと信号線間の信号の流れ です。極カループの距離を短くすることで歪みを低減できま す。なお、基板の状況に合わせてグランドリードなどを作り 込むだけで、低歪みの測定ができます。

本測定では、汎用品の PCB プローブ接続用コネクタをつ かったり、基板上に測定パッドを設けたり、プローブ専用のピ ンを立てられるようにしたりすることはしていません。PCB パ ターンを測定の為に変更することによる動作への影響が懸 念されます。

(a)銅箔グランドリードでプロービング

(b)銅箔グランドリード 【図 22. 銅箔を使ったプロービング】

【測定のポイント7】

光絶縁計測 DM-8000H シリーズで確実に高電圧・高速ス イッチング波形を離れたところから安心して測定できます。

(2) 電流プローブの種類とプロービング方法

GaN/SiC/MOSFET デバイスの電流計測は電圧計測より も難しいと考える方々が多いと思います。電圧計測は、直接 プローブの先端を当てる行為で簡単に歪みの少ない波形が 得られますが、電流計測は電流ラインを何らかの形で取り出 す必要があるからです。たとえば、センサを挿入するために 電流パターンを迂回させる事が求められます。

これらの方法の中で、極力回路に影響を与えず電流計測ができる方法が無いかを、これから検討します。

電流計測の方法は以下の方法があります。

- シャント抵抗方式
- ホール素子+CT 方式
- ③ ロゴスキーコイル方式
- ④ CT 方式 これらの4つの方法を簡単に紹介いたします
- ① シャント抵抗方式

シャント抵抗方式には大きく2つの方式があります。 ●高周波シャント抵抗方式

図 23 にスイッチング回路とその電流測定ポイントを示し ます。同軸型シャント抵抗は、オシロスコープと直接 50Ω 系 同軸ケーブルで接続して使います。シャント抵抗にはわずか なインダクタが(c)の様にあるため、電流波形に歪みが現れ ることがありますが、広帯域 GHz のダブルパルス波形など を取り込むことができます。電流は、取り込む位置にもより ますが、原則フローティング状態で取得します。

これは、配線インピーダンスによる電圧降下などにより、シャント抵抗を挿入した位置が完全にグランドにならない事が 想定されます。

(a) 同軸型シャント抵抗取り付け例

(b)シャント抵抗 【図 23. 同軸型シャント抵抗

(c)等価回路 T&M Research 社】 実際に、GaN デバイスの電流波形を取得した例を【図 24】 に紹介します。シャント抵抗はインダクタンスが小さい電流検 出用シャント抵抗を取り付けるようにして下さい。信号の取り 出し方法は、差動入力形式のプローブもしくは、50Ω 終端の オシロスコープにセミリジット同軸ケーブルで直接入力する 方法があります(b)。GaN デバイスの電流計測の為に幅広タ イプのシャント抵抗 47mΩ の両端電圧は、2.05V です。 ^{2.05V}/_{47m0}=43.6A max の電流が流れていました(c)。

 $/47m\Omega^{-43.04}$ max の電流が流れていない。 波形は、大きな歪みも無く測定しています。

評価ボードで電流計測する際は、このような方式で十分な のですが、実際の回路で電流計測する際は、シャント抵抗方 引きでは瞬時の電力計測が困難になることがあります。低 損失パワーデバイスは、ON 抵抗が非常に低く、数 10mΩ 程度かそれ以下になります。そこに、47mΩの抵抗が接続さ れるため、電圧降下により回路動作を確実に捕らえる事が できません。抵抗値を1mΩにした場合は、43.6mV,の信 号出力が得られますが、10A では 10mV 前後の電圧値とな り、ノイズフロアレベル近くの電位になってしまいます。小さ いシャント抵抗値を使ってオシロスコープ、デジタイザで波形 観測する事は難しくなってきます。

(a) シャント抵抗取り付け位置

(b) シャント抵抗取り付け位置

(c)トリプルパルス電流波形 【図 24. 電流計測】

●電力測定用のシャント抵抗

実効電力を測定する場合のシャント抵抗方式は、使われ る測定器が高分解能、高精度、高感度の測定システムを使 うことが主であるため、先ほどの高周波シャント抵抗方式の 様な問題はありません。50Arms(1000Apk)で3mΩのシャ ント抵抗が使われています(Newtons4th PPS5530HC)。 500Armsのシャント抵抗では0.2mΩが使われています。

熱の影響を抑え、インダクタンス低減を図るには、平面方 式のシャント抵抗が必須です。平面型は、電流配線を分散し て通しやすい利点があります。各々のシャント抵抗の配線 は、折り返して配線されており、それぞれの磁界が打ち消し 合うようになっており、インダクタンスの低減化を図っていま す。その上、電流パターンと抵抗は放射状に配置されている ため、熱が一極集中しないように均等に分散されるため、熱 の影響を抑えた特性となります。

本技術は、Newtons4th PPA5500/4500/1500/500 シリ ーズ、HF シリーズシャント抵抗製品に活かされています。

電流の向き 図 25. 新方式のシャント抵抗による電流検出方法

●他の電力測定用のシャント抵抗

(a) 同軸型, (b)ホイル型 放熱・インダクタンスの改善は旧方式である 【図 26 各種シャント抵抗】

このほか、【図 26】のように同軸型シャント抵抗や抵抗箔タ イプのシャント抵抗があります。同軸型のシャント抵抗は、 Newtons4th 社が旧来使ってきましたが、 シャント抵抗面積 体積
の比が小さいため熱が十分に発散できない場

合や、十分にインダクタンスを低減できない課題がありました。現在、Newtons4th 社製品では、この旧方式(PPA2500 世代)は採用されていません。

ホール素子+CT 方式

通常オシロスコープで電流測定をする場合には、クランプ 式の広帯域電流プローブ(CT とホール素子を組み合わせた タイプ)が使用されてきましたが、スイッチング電源の高周波 数化や小型化により、今までのクランプ式の広帯域電流プロ ーブが使用できない場面も増えてきています。

特長は、測定精度が高く、オシロスコープとの親和性が高いことです。弊社製 DSO ViewGo シリーズならば、プロー ブ専用メニューにより、プローブ名称を、チャネルメニュー内 で設定するだけで単位換算し、直読で電流値を読みながら 測定することができます。 交流成分だけでなく直流成分も 正確に測定できることも特長としています。

欠点としては大電流になるとクランプ部が大きくなってしま うことです。高密度実装された電源の計測では使用できない 場面が増えています。【図 27】は、SS-250 100MHz 電流プ ローブで実測した事例です。迂回路を長く(4~5cm)した事 や、パターン上の影響を受けて、電流波形に大きな歪みが 現れてしまいました。を基板上の GaN デバイスのドレイン電 流を計測していますが、電流プローブの耐電圧を考慮しなが ら測定して下さい。

クランプが容易な場面では、威力を発揮する電流プローブ ですので、利用されておられる方々のご心配は無用です。測 定シーンに応じて使い分けましょう。

【図 27. クランプ式電流プローブで測定した例】

③ ロゴスキーコイル電流プローブ(非磁気飽和特性)

【図 28. ロゴスキー電流プローブ】

【図 28】にロゴスキーコイル電流プローブの例を示します。 センサ部が細く柔軟なコイルで構成されるため、高密度実装 化されたスイッチング電源の狭小部でも測定可能です。

DC 成分は通さない欠点を持ちますが、センサ部が空芯コ イルで構成されるため、信号が大電流でも飽和しにくく、挿 入インピーダンスも小さいため、回路への影響が極力避けら れ、使用される場面が増えています。岩通の SS-280 シリー ズロゴスキーコイル電流プローブは、細く柔軟な構造により、 パワーデバイスのリードピンに絡ませることで大電流のパル ス応答特性を簡単に測定することができるため、EV/EHV の 主機インバータやエアーコンディショナなどの大出力であり ながら、小型化が進む電気機器の設計・開発などに使われ ています。【図 29】に 100MHz ロゴスキーコイル電流プロー ブ SS=68x シリーでダブルパルス試験を行った例を示します。 ダブルパルス試験のスイッチング電圧・電流波形とターン ON 部の拡大波形を示します。SiC/GaN デバイスは高速ス

【図 29. 100MHz ロゴスキーコイル電流プロ ーブの波形とプロービング事例】

イッチングしており、ターン ON/OFF 遷移時間は数 ns にな る事があります。本測定では、電流波形は、最大 10.3A 得ら れています。ターン ON の遷移時間は、6nS 以下と高速動作 していることがわかります。

④ CT 方式

CT.方式には、波形観測を得意とする高周波タイプと電流 精度が高いタイプがあります。まず、波形観測用途の CT.に ついて説明します。

●波形観測用 CT

金属ケース入りの CT.で注意したいことがあります。図 22 のGaN デバイスのドレイン電流を測定するシーンですが(図 2電流計測では、センサと回路が短絡しないように絶縁を取 り、基板との容量結合の影響を考慮した測定が求められま す。

電流の取り出しの為の迂回路は、【図 30】タイプの CT.で 4cm 程必要であり、電圧波形の歪みにも影響します。狭い 空間の測定は、この種のセンサの利用を避けた方が良さそ うです。

【図 30. 金属ケース入り電流センサと電流波形】

●高精度 CT.

電力アナライザなどに利用される電流センサです。貫通型 で、高精度計測を実現しています。外観は、【図 31】に示しま す。

岩通では、Newtons4th 社製品の取扱いの関係上、大電流の貫通型電流センサ(カレントトランデューサ CT)を扱っています。電カアナライザに限らず、デジタルマルチメータ (VOAC76/75xx シリーズ)にも利用できます。使用する際は、 指定される負荷抵抗、電源を利用します。

【図 31. CT】電流波形

【測定のポイント8】

電流計測は、測定対象によって最適な方式のプローブを 選定します。

・高精度 DC/AC 測定には、クランプ式のホール素子+CT. 方式の電流プローブ(フラックスゲート方式)

・狭小スペース、サージ電流などの、ピーク電流が大きく。長時間測定されたい場合は、非磁気飽和・高耐電圧・大電流・狭小スペースのロゴスキーコイル電流プローブ

・電力計測用には、Newtons4th のシャント抵抗がおすすめ です。後方ページに電流プローブのセレクションガイドを掲載 します。

(3) プローブ校正方法

プローブ校正には、電圧用と電流用があります。【図 32】 (a)は、大電流パルス発生する校正器(KSZ100 (100A)) (b)は高電圧パルス発生する校正器(KHT6000 (6kV))です。 プローブの状態を定期的に確認することをおすすめします。 たとえば、高電圧プローブはオシロスコープ毎に調整しなけ ればなりません。測定前に調整がずれていると、インパルス 波形の波高値が小さくなり、波形が大きくひずみます。入力 される電圧が低すぎる場合、調整の追い込みができずに、

(a)大電流校正器 KSZ100

(b)高電圧校正器 KHT6000 【図 32. 校正器】

調整ずれのまま使ってしまうこともあるため、プローブに合っ

た適正な電圧入力で試験を行います。

(4) プローブの位相調整方法

電力計測は、電圧×電流の波形演算から求めることがで きます。【図 33】は、実際のターン ON 時における電力損失 の違いを示します。位相調製されていない状況では、電力損 失に差が現れてしまいます。図(b)は、電力損失が大きく現 れています。一方(a)は小さくなっています。ちなみに、リアク トルの損失測定もこの領域の位相差が大きな損失誤差につ ながります。

なお、電力アナライザで瞬時の電力計測は位相調整して も確実にできません。サンプリングがあまりにも不足している からです。GaN/SiC/MOST の電力計測のわずかな効率差 を確認する際は、電力アナライザと高速サンプリングで動作 する絶縁計測かオシロスコープの両面で検証する必要があ りそうです。

さて、位相調整の方法について提案をしたいと思います。 小信号ならば、信号発生器と終端抵抗器を使って合わせ込 みができますが、大電流測定には対応できません。そこで高 速パルス発生器を紹介します。使用機材は、高速パルス発 生器で 40-50V 出力可能で 50Ω 終端時に数 ns 以下の立ち 上がり波形が得られるタイプを使います。信号発生器と 50Ω 終端器の間には電流検出できるように治具をつくります。 【図 34】に接続例を示します。

(b)電流・電圧位相がずれている 【図 33. 電力損失測定結果と位相差の影響】

【図34】の位相合わせは、電流:CH1,電圧:CH2として、電 流プローブのクランプ時の方向性を終端器に流れる電流の 方向に合わせます(GND 側に向けます)。図(a)は立ち上が りはじめの波形で位相差をデジタイザもしくはオシロスコープ 側で時間補正する前の状態です。Deskew は 0.00ns を示し ています。図(b)は、電流位相を 13.50ns 進めて位相合わせ された状態です。このとき気をつけたいのは、電圧の立ち上 がり/立ち下がり特性が一致しない限り、振幅の中心で位相 あわせしないようにして下さい。周波数帯域が低いほど、遅 延時間が遅くなる傾向があるからです。

[11]

Next

(2/2)

ここで、パルスの立上がりが遅いと位相調整が困難になり ます。10ns 程度の立上がり時間のパルスジェネレータを使 って調整することが望ましいです。ロゴスキーコイル電流プ ローブで等価的に電流を増やして調整したい場合は、コイル のターン数を増やします。ただし、コイルのインダクタンスが 増えてくると電圧/電流の位相差が出てきてしまいますので、 コイルはなるべく小径にして5ターン程度にします。

【測定ポイント9】

帯域の違うプローブ同士を位相調整する場合の位相合わ せのポイントは立ち上がり/立ち下がりはじめです。

2. 静的な電力損失を測定する方法

スイッチング電源の設計段階で、それに使用するパワー 半導体の選定は重要な作業です。

半導体カーブトレーサ CS シリーズは最大 15kV までのパ ワー半導体の静特性測定に対応可能です。

また、オプション関係も豊富でスキャナシステムを使用した 複数素子の自動測定や、ホットプレートを使用した温度特性 試験などを専用の自動測定ソフトから行うことができます。

● I-V 特性試験

スイッチング電源の設計段階で、それに使用するパワー半 導体の選定は重要な作業です。

半導体カーブトレーサ CS シリーズは最大 15kV までのパ ワー半導体の静特性測定に対応可能です。

また、オプション関係も豊富でスキャナシステムを使用した 複数素子の自動測定や、ホットプレートを使用した温度特性 試験などを専用の自動測定ソフトから行うことができます。 【図 35】にカーブトレーサと GaN デバイスの I-V 特性試験例 を示します。

【図 35. GaN デバイスの I-V 特性, カーブトレーサ】

 Edge
 C
 DC
 18

 1: 100mV
 2: 10.0V
 3:20.0mV
 4: 100mV
 M:5.00V

 DC1MQ
 DC1MQ
 DC1MQ
 CH1 + CH2

 ofs
 -300mV ofs
 -30.0V Empty
 Empty

 WATELL
 f:95.8878kHz
 10GS
 1k pts

(b) 位相調整後

【図 34. 位相調整システム】

ブレークダウン試験

図 36 は電力(電圧・電流積)発熱によって熱的な破壊が発 生する状態を示しています。GaN デバイスのブレークダウン 試験を行った結果、1500V までの耐圧が確認されました。

【図 36.GaN デバイスのブレークダウン試験】

【図 37】は本体(CS-3000 または CS-5000)、スキャナー ユニット(CS-700 シリーズ)、ソフトウェア(CS-800、CS-810)、接続ケーブルを組み合わせることにより、自動的に最 大 10 個までのディスクリート・パワー半導体のパラメータを 自動で測定することができるスキャナシステムです。検査工 数削減に大きく貢献することができます。たとえば、6-in-1 SiC- IGBT モジュールや,GaN/SiC/MOSFET デバイスなど の複数個数の試験などが行えます。

[【]図 37. スキャナシステムとカーブトレーサ】

●耐環境試験

SiC デバイスや GaN デバイスを評価するために、デバイス 自体を高温でテストできます。

【図 38】のホットプレート JIG では 200 度までのビルトイン ホットプレート、300℃/400℃まで対応するホットプレートシス テムがあります。サーモストリーマシステムは、高低温の状 態を短時間に発生させることが出来ます。図 38 の例では、 カーブトレーサは-80℃から+225℃までの温度テスト範囲を 実行します。 300℃も可能です。

【図 38.温度試験システム】

3. 実効電力を測定する方法(パワーアナライザ)

[【]図39 インバータ・モータシステムの電力計測】

PPA3560、PPA5560シリーズは、6電力測定を提供しま す。同時に、電圧・電流の全12入力の結果をFPGA/DSPで 取りこぼしなく同期して演算した結果を示すことができます。 また、入出力20ch、温度入力最大6chを持つアナログ・デ ジタルI/O【図40】を拡張できます。パワー計測しながら温度 計測できるため、データロガーが不要となります。

【図 40.アナログデジタルインタフェース(ADI-40)】

自動車、家電などに使われる可変速モータにおいては、 サイクルバイ・サイクルの電力計測による細かい制御特性を 検証しています。PPAシリーズは低回転から高速回転まで 可変する信号を高速取り込みすることができます。

PPA5500は最速2m)、PPA3500シリーズは最速5ms間 隔で測定できます。PCの制御も最高5ms(PPA5500)間隔で PC上にパラメータ数値の転送ができます。【図41】グラフ は、Data Logger ソフトウエアで取得したデータをExcel上で グラフ化したデータです。写真は、インバータ計測したモータ 及びインバータです。

【電力測定の要 校正体系】

Newtons4th パワーアナライザは、ISO17025 UKAS

Calibration Certificate で製品を提供しています。ILAC の 取り決めを通じて、試験所及び検査機関の世界的な承認が 得られた製品に付随する試験結果、検査結果、および校正 データは、UKAS,IA JAPAN、JAB、VLAC、で相互に受け入 れています。

また、Oxford Universityとの共同研究により、高周波領域に おける電力の校正体系Closed Loop Calorimetryを電力ア ナライザとして初めて確立し、電力アナライザの製品開発・ 製品品質にも活かしています。

【測定ポイント 10】

電力の校正体系 Closed Loop Calorimetry 法で電力測定 をより正確に提供できるようになりました。 インバータの小型化、高周波化が進展するにつれ、トラン スやインダクタなどの磁気特性やコアロス(鉄損)の解析が 必要になる場面が増えてきました。今までは、スイッチング 電源の開発に磁気特性の解析までする必要はありませんで したが、高周波化によりトランスやインダクタで発生する損失 による発熱が大きな問題となり、その対策を回路設計側も検 討する必要が出てきたためです。【図 43】に軟磁性材料を使 用したトランスやインダクタの例と、BH アナライザ(SY-8218/8219)の外観、解析画面の一例も示します。

磁性材料によっては、磁気特性に温度依存性を持つもの があり、トランスなどに使用されるフェライトは、室温では安 定せず、高温で安定する性質も持ちます。BH アナライザを 用いた温度特性評価システムを使用すると、-30℃から 150℃の範囲で磁気特性を測定することができます。一般的 なフェライトである PC40 のコアロスと周波数、磁束密度の関 係を図(b)に示します。

(a)磁性体材料損失測定

(b) 温度変化による高位相角の磁性体材料損失 【図 43. B-H アナライザと測定事例】

このほか、DC バイアス時の磁性体材料の特性を測定する DC-Bias Tester を【図 44】に示します。

4. 高位相角、高精度の損失解析(B-H アナライザ)

Sample Parameters RL: 0 (Ω) Le: 53.4 [mm] Ve: 226.95 [mm ³] N1: 23 Ae: 42.5 [mm ²] We: 5 [g] N2: 23 Mode Select Current Ref. H: 1:	Excited Conditions Function : Frequency : 10 [kHz]
B: V:	Measured Values 12.224 [k W/m ⁸] dPcv : 12.224 [k W/m ⁸] dPcv : 0.5545 [W/ks] e : 0.65279 u/d : 336.04 dB : 20.043 [mT] dVL : 1.2526 [V] dH : 9.9527E-022 [A] Hdc : 4.3071 [A/m] dVe : 7.4960E-03 [V] : :
10 (A/m) /4/v	Configurations Average: 16 Ped Type: SY-980 OSC-OUT: x 0.1 Mov-Ave: 3 Pwr Amp: HSA4014-IW Retry: 8

【図 44. B-H アナライザとDC バイアス、アンプ】

ところで、磁性体材料の損失を B-H アナライザで測定するの はなぜでしょうか?

損失を測定する方法を3つを紹介してきましたが、いずれも、 入力の位相調整のみの補正に限定されていました。高位相 角の磁性体材料の測定には、周波数特性を位相と振幅の2 つの角度から補正しなければ、測定系の影響が現れます。

電流検出部のわずかなインダクタンス成分による周波数 特性差につながることと、励磁電流検出部、誘導電圧の検 出部の磁界波形、磁束密度波形の歪み、そして測定するレ ンジ間誤差を補償することは困難です。 このため IEC62044-3に紹介されている"Cross Power Method"を活 用して誤差補償しているため、B-H アナライザが有効です。

電力アナライザ、オシロスコープでの B-H 解析は、時間軸

要素のみの補正となっていますので、正確性に欠きます。さらに大きな励磁で印加したい場合は、B-Hアナライザにパワーアンプを取り付けて大出力を得ます。磁性体材料は、多種多様あり、要求事項も多くありますが使用用途によって材料を選別しなければなりません。たとえば、モータのステータ、コアなどは低損失タイプを求めます。熱の発散は、部品の大きさにも関わってくるからです。

以上、4つの電力損失の測定方法について測定するため 提案を致しましたが、このほか、パワーエレクトロニクスに必 要な測定提案(インピーダンス測定、インバータ制御、デジタ ルマルチメータによる解析などについて紹介します。

5. インピーダンスアナライザによる部品の測定 【インピーダンス解析】

スイッチング電源のスイッチング速度の高周波化にともない、インダクタンスなどの受動部品のインピーダンスも広帯 域で測定する必要が出てきています。

PSM3750 を使用してインピーダンスを測定するには、 IAI2(Impedance Analysis Interface)オプションを使用します。 PSM3750 は、IAI2 との組み合わせることで、外部シャントを 使わず、4 線式ケルビン手法を使って LCR を正確に測定す ることができます。

IAI2 ではより高周波までのインピーダンスの測定が可能 です。実際に圧電素子のインピーダンス測定事例を【図 45】 に示します。圧電素子は、昇圧コンバータの圧電トランスな どに使われています。

【図 45. PSM3750 インピーダンスアナライザの測定】

【図 47. 任意のパルス幅、感覚のパルス生成例と ディレイパターン・ジェネレータ DG-8000 の外観】

【フィードバック解析】

電源のフィードバックループの解析は、スイッチング電源 のフィードバック系の高速化、スイッチング速度の高周波化、 高周波域におけるトランスの特性やアイソレータ部品の特性 など、使用される機器のアプリケーションによってフィードバ ックループの最適化を図る上で欠かせません。しかし、高 電圧が印加している回路系に対して評価するには、絶縁トラ ンスなどを利用して測定することが一般的に行われていまし た。

ここで、高電圧機器や電源入力部、スイッチング部などの 検証を 500Vpk のアイソレーションで測定可能な周波数レス ポンスアナライザ PSM3750 が威力を発揮します。

PSM3750 を使用すると、高電圧に対応できるため実際の 電圧に合わせた測定が可能です。そのため、使用部品の 実動作に近い特性での評価が可能となり、インダクタンスや コンデンサを含む回路系の特性を確実に捉えることができま す。フィードバック解析やデバイスの特性試験において、ア イソレーション・トランス不要で測定できることも魅力です。 図 46 に PSM3750 と他のモデルとの差を示します。

【図 46. インピーダンスアナライザの比較】 (左)PSM1700 シリーズ (右)PSM3750 シリーズ

無償のリモートコントロールソフトウェアで、パソコンに直 接データ転送することもできます。図35は、負帰還フィード バックループの安定性を評価した例を示します。このほか、 パワーアンプ(N4L 社 LPA アンプシリーズなど)を用いて電 源電圧変動による応答 PSRR(電源電圧変動除去比)特性を 解析することもできます。

6. インバータの制御

ディレイパターン・ジェネレータの制御機能を使うと特殊な 知識や技術を必要としないで、インバータの動作検証、効率 化検証が可能となります。複数台の信号発生器を組み合わ せて複雑なタイミング制御をする必要はありません。最大6 チャネルまでのパターンを簡単に作ることができます。

6チャネル独立パルス制御で、連続する2つのパルス幅や パルス感覚を簡単に制御できます。単層バイポーラ、単層ユ ニポーラ、三相2レベルインバータの制御用 PWM 信号をキ ャリア周波数、偏重周波数、偏重度を設定するだけで生成で きます。【図 47】に任意パルス出力例を示します。

7. デジタルマルチメータを用いた電圧の監視

インバータや DC-DC コンバータなどの電源監視に利用で きます。実測例は、一般的な実験室の電源ラインをモニタし た結果です。 電源電圧の変動の様子が分かります。

マルチメータ VOAC7602 の合否判定機能を活用すると、 電圧変動が大きくなった場合にブザーを鳴らしたり、 GO/HIGH/LOW 表示をわかりやすく表示させたりすることが できます。エンジニアに注意を促せます。

また、マルチメータ VOAC7602 のヒストグラム機能を使用 すると電圧ばらつきを視覚的に確認することができます。 データは、USB ストレージに CSV 形式で保存され、PC 上で

【デジタルマルチメータ VOAC7602】

【図 48. 電源電圧変動をトレンドとヒストグラム表示】

グラフ表示や解析をすることもできます。

8. インバータ測定、パワーデバイス/モジュール試験

インバータは、回路をオン/オフすることで出力する電圧 や電流を制御しています。実際にオン/オフするスイッチ には MOSFET や IGBT などのパワーデバイスが使用され ます。測定には【図 49】デジタルオシロスコープ、高電圧差 動プローブ(SS-320)、電流プローブ(SS-240A)、100W ク ラス以下に利用可能な小電力インバータの入力電力モニタ 用治具などが使用されます。インバータ1相当たりのシステ ムを【図 49】に示します。

スイッチング特性の試験項目には、ターンオン・ターンオ フ・逆回復・短絡試験などがあります。数多くのパラメータを 自動測定ソフトの使用で、簡単に特性を評価することができ ます【図 50】。制御ソフトがインストールされたパソコンから 試験項目に応じてオシロスコープ(ViewGo シリーズなど)を 自動制御し、各種パラメータを自動で表示します。

【図 49. インバータ測定セット】

【図 50. 半導体パラメータ試験ソフトト】

9. 三相 2 レベルインバータの測定

DM-8000H シリーズは光絶縁計測システムでインバータ 波形を取り込む事にも優れています。コモンモードノイズを 軽減し、ハイサイドのスイッチング波形を確実に捕らえます。 高電圧対応シングルエンド・パッシブプローブで自動車用イ ンバータ、電車用の大電力インバータの測定に対応します。

【図 51 に】想定される接続例を示します。ハイサイド、ロー サイドのゲート信号及びスイッチング電圧を同時に解析でき ます。最大 24ch 分の測定(高分解能モジュール DM910Ax シリーズの場合は 12ch)で各デバイス制御の最適化、 GaN/SIC/MOSFET デバイスを搭載したモジュールの瞬時 の損失を捕らえ、電力アナライザで得られない電力損失の 傾向を見極められます。

【図 51. 三相2レベルインバータの スイッチング測定例】

10. インバータの高分解能・高精度測定の課題

(1) 高分解能測定に必要なプローブ

高分解能で波形観測するとプローブの歪みが目立つこと に気付きます。もし、確認されていないのであれば、高電圧 プローブ校正器などを活用して確認する事をおすすめします。

【図 52】はオシロスコープ/デジタイザとプローブのマッチン グについて検証しています。高電圧パッシブプローブはプロ ーブの調整が必要です。調整されていないと【図 52】のよう に 200V スイッチングしている波形 ON 直後が歪んでいます。

【図 52. インバータの高分解能測定】

測定レンジは、V_{Ds} 20µs/div,で測定し 500ns/div で拡大。 電圧レンジは 50V/div で測定可能なレンジを 5V/div レンジ で拡大するとプローブの調整ができる範囲を超えた状態で

あった。最良点に合わせていますが、図(a)の様にずれが目 立ちます。一方、(b)はデジタイザとの相性が良いため、プロ ーブを調整すると ON の直後の波形には歪みが見られてい ませんでした。

高電圧パルス校正器でこのような差が現れている事は、 実際の波形でも同様な現象が見られるはずです。

【図 53】は、GaN デバイスのスイッチング電圧 Vds=200V のターン ON 波形です。ON する瞬間で大きな歪みを確認し ました。

これはターン ON、ターン OFF スイッチング損失、スイッチ ング ON 時の最初の時間において差が現れます。高速デバ イスの損失測定、電力変換効率の差異を見極める測定に支 障する事になるでしょう。

【図 53. GaN スイッチング Vds 波形の違い】

【図 54. GaN スイッチング損失(ターン ON 損失)】

(2)瞬時電力の測定事例

【図 54】に GaN デバイスのターン ON 電力損失測定測定 結果を示します。電流プローブ側の位相をパルス発生器に て+25ns の位相調整をしています。TIME/DIV:2µ/div で取 り込み、20ns/div で拡大しています。プロービングには、前 述の銅箔グランドロードによって低インダクタンス配線してお り、波形 歪みは抑えられております。電流プローブは、 100MHz ロゴスキーコイル電流プローブと電流検出部に銅 箔パターンを使い低インダクタンス配線にしており、スイッチ ングの歪みを抑えています。

(3)さらに目立つプロービングによる干渉

【図 55. 併走した場合の干渉】

差動ブローフやバッシフブローフを併走させてプロービン グはしてないでしょうか?

プロービングのリード、同軸ケーブルの配線などを併走さ せるとプローブ間の静電結合により、高電圧信号が高いに 重畳し合います。【図 55】の例では、片側の CH1 に 1kV 信 号入力、もう片側 CH2 は信号入力しない状態にしました。併 走させることで、CH2 は無入力にも関わらず波形が現れて いました。

プローブは、スペース、見た目でまとめて設置しやすいで すが、プローブ間で干渉することに注意して下さい。これは、 電流プローブでも同様です。三相インバータなどの測定では、 相間の距離が狭いことから、電流プローブや電圧プローブ がお互いに干渉することがありますので、お互いがなるべく 併走されないように配線します。

理想的には、電流パターン、基板に対して直角にプローブ を当てるようにすると電磁界の影響を避けやすくなりますが、 複数本数の配線がある場合はなるべく互いの距離を離すよ うにします。

【測定ポイント 11】

プローブは互いを併走させないようにします。

(4)電流プローブの干渉

電流プローブは、差動プローブと同様に他のチャネルに干 渉すること上がります。【図 56】は電流パルス 20A が流れる 電流ラインに直接クランプせず、配線に併走させて配置しま した。電流検出向きは右方向です。①の位置に電流プロー ブを近付けると、電流パルスの立ち上がり時にパルスが現 れました。最大-108mA です。②の位置では反対方向に電 流波形が現れています。最大 75mA 流れていました。電流 ラインに近付けると、電流振幅に対して 0.5%以上の影響が 現れることが分かりました。これは、ターン ON 損失測定に 影響を与えます。【図 56】の線路をツイストペアにすると、電 磁界が相殺されて歪み低減を図れます。そこで、電流プロー ビングは以下の点に注意します。

【図 57】は電流プローブの配置を変えた時の電流波形です。 電流プローブを直交するように配置することで、電磁界の影

【図 56. 電流プローブの干渉 1】

【図 57. 電流プローブの干渉 2】

響を抑えており、最大 14mA に抑えています。電流ラインに 対して電流プローブのクランプ穴部を【図 57】の右の様に近 づけると先ほどより電流値は上がりますが、併走させるより も大幅に低減されていることがわかります。

【測定ポイント 12】

電流プローブを電流ラインに対して併走させない事と、電 磁界の向きに対して直交させるように電流プローブを配置す るようにして、外部電磁界の影響を避けるようにします。

11. 電力損失を熱で捕らえる

インバータの電力計測で温度計測しながら効率測定したり、 評価基板のパワーモジュール、デバイスの熱破壊を防いだ りする場面などで使われています。

【図 58. インバータの電力測定時の温度計測】 (首都大学東京和田研究室)

赤外線放射温度計(サーモグラフィー)FLIR 社の温度計で 更に精細な温度計測も実現できます。【図 59】にある様なイ ンバータモジュールに搭載されているデバイス、配線に発生 する熱などです。細い配線材などを測定するには、高精細の 測定器が必要です。

【図 59. FLIR サーモグラフィー(FLIR T1050sc) 及び評価対象モジュール例】

使用したアクセサリの紹介

SKID-M/MSU-1500 を使ったプロービング事例

MSU 1500 (893-350-006) 着可能直径:5~17mm アーム長:200mm 固定方式: 1.2kg スチールベース

SKID M (893-500-010) サイズ:160mmx240mm 高さ:20mm、100mm

SKID L (893-500-020) サイズ:300mmx340mm 高さ:20mm、100mm

KHT-6000C 500V ~ 6kV 高電圧プローブ校正器 Tr₂₀₋₈₀: <45ns

KHT-1000D 100V/200V/500V/1kV 高電圧プローブ校正器 Tr₂₀₋₈₀: <14ns

 $\begin{array}{l} \text{KSZ100C} \\ \text{20} \ / \ \text{50} \ / \ \text{100} \ \text{A} \\ \text{Tr}_{\text{20}-\text{80}} \ : \ \text{40} \ \text{-} \ \text{120ns} \end{array}$

【参考文献】

●GS665MB-EVB/GS66508T-EVBDB User's Manual / schematic diagram

GaN Systems

•GSP65MB-EVB / GSP65R25HB-EVB: User's Manual / schematic diagram

GaN Systems

Printed Circuit Board Layout and Probing for GaN Power Switches Application Note AN-0003 Transphorm, Inc Zan Huang, Felix Recht and Yifeng Wu

•Design for Reliability: From Components to Systems

Professional Education Seminar S17 APEC2017 Center of Reliable Power Electronics (CORPE) Aalborg University, Denmark

Frede Blaabjerg, Francesco lannuzzo, Huai Wang • GaN Transistor for Efficient Power Conversion Power Effect Technology Magazine

▲ Alex Lidow, Johan Strydom, Michel de Rooij, Yanping Ma ●JIPE-37-11 インバータの高電圧アイソレーション測定

- 2011年8月6日
- ●JIPE-38-17 大電流、高電圧プロープの評価と使用上の注意点 2012 年 10 月 20 日
- ●高度ポリテクセンター パワーエレクトロニクス計測のノウハウ セミナー 2007~2017 年
- ●これでなっとくパワーエレクトロニクス コロナ社 (東京工科大学 高木教授)

高木 茂行·長浜 竜 (++)

●シミュレーション機材協力

東京工科大学 高木教授研究室 (PSIM ソフトウェア)

●大阪大 パワーエレクトロニクス技術に関する人材育成事業の展開 プロービングセミナ資料 2018.01.27

●APEC2018 Exhibitor Seminar

コロナ社

Comparison between Digitizer, Power Analyzer and CROSS POWER Method on Magnetic Material Analysis 2018.3.7

WATSU ELECTRIC Field Support Ryu Nagahama

_高電圧プローブセレクションガイド

形式	パッシブ プローブ	アクティブ プローブ	高電圧 パッシブ プローブ	高電圧ペア パッシブ プローブ	汎用高電圧 プローブ	広帯域・高電圧 差動プロ <i>ーブ</i>	光アイソレーショ ンシステム
外観					A P		
減衰比の例	1:1 10:1 20:1	10:01	100:1 1001:1 2000:1	100:1 1000:1	50:1 500:1	50:1 100:1 250:1 500:1	プローブに依存 上記プローブ利用 可能
周波数帯域例	数MHz~ 500MHz	~2.5GHz	400MHz	400MHz	100MHz	400MHz	500MHz
入力抵抗・容量例	1MΩ//150pF 10MΩ/7.5-15pF	1MΩ//0.9pF	10-100MΩ //4-10pF	$50M\Omega//6-10pF$	8MΩ //3.5 pF	10 MΩ // 2 pF	プローブに依存
電圧入力例	400V	8V	6kV	数kV~20kV	1kV	2kV	Wide Range
測定方式	シングル	シングル	シングル	差動ペア	差動	差動	光絶縁
測定事例 測定キ-ワード	ゲート信号 デジタル制御	ゲート信号 デジタル制御	スイッチング回路 ダブルパルス試験	スイッチング回路 ダブルパルス 試験	スイッチング回路 ダブルパルス 試験	スイッチング回路 ダブルパルス試験 インバータ回路 電力変換器 ハイサイド	スイッチング回路 ダブルパルス試験 インバータ回路 電力変換器 ハイサイド
GaNデバイス評価						最適	最適
SiCデバイス評価			最適	最適	最適	最適	最適
デジタル制御回路	最適	最適					

岩通電流プローブセレクションガイド

	ロゴスキーコイル	広帯域シャント抵抗	ホール素子+CT	シャント抵抗	СТ
	SS-68x/62x/28x/29x	T&M RESEARCH	SS-240A/250/260/270	N4L HFシリーズ	PMK(LILCO)シリーズ
外観または接続事例					
用途	波形観測用	波形観測用 (アイソレーション計測)	波形観測用	高精度電力計測	高精度電力計測
電流レンジ	中·大電流	大電流	小·中電流	小・中電流	中、大電流
精度	Δ	×	0	Ø	Ø
	±2\$	±4%	±1%	±0.1%	±1%
検出部	Ø	×	Ø	×	0
の絶縁	クランプ式	回路に直接接続	クランプ式	回路に直接接続	塗装
					カプトンテープ等で対策可
DC特性	×	Ø	0	Ø	Ø
	AC タイプ	直接入力	間接入力	直接入力	直接入力
低周波特性	Δ	Ø	Ø	Ø	Ø
1Hz-1MHz	AC タイプ	直接入力	ホール素子特性	直接入力	直接入力
高周波特性	0	Ø	Ø	×	0
>1MHz	20MHz~100MHz	~2GHz	2MHz~100MHz	1MHz	100MHz
磁気飽和	Ø	Ø	× 磁気飽和します	Ø	〇他のCT.より耐性あり
挿入方法	Ø	Δ	0	Δ	Δ
	クランプ式/貫通式	回路を切断	クランプで用意	回路を切断	貫通式
出力形式	電圧	電圧	電圧	電圧	電圧

<u>瞬時電力損失~静特性試験&位相磁性体材料の損失測定</u>

长沙力高捷创仪器有限公司 电话:0731-85260926 地址:长沙市雨花区韶山南路 亚商国际大厦A座2524室 网址:www.jectronic.com 邮箱:yujin.wu@miko.com.cn

〒168-8501 東京都杉並区久我山 1-7-41 TEL 03-5370-5474 FAX 03-5370-5492 第二営業部 計測業担当/アカウント営業担当/フィールドサポート担当

〒550-0005 大阪府大阪市西区西本町 2-3-6 (山岡ビル 1F) TEL 06-6535-9200 FAX 06-6535-9215 西日本支店 計測営業担当